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a b s t r a c t

We consider natural convection in flow saturated porous media with random porosity. The
porosity is treated as a random field and a stochastic finite element method is developed.
The stochastic projection method is considered for the solution of the high-dimensional
stochastic Navier–Stokes equations since it leads to the uncoupling of the velocity and
pressure degrees of freedom. Because of the porosity dependence of the pressure gradient
term in the governing flow equations, one cannot use the first-order projection method. A
stabilized stochastic finite element second-order projection method is presented based on
a pressure gradient projection. A two-dimensional stochastic problem with moderate and
large variation in the random porosity field is examined and the results are compared with
Monte-Carlo and sparse grid (Smolyak) collocation approaches. Excellent agreement
between these results indicates the effectiveness and accuracy of the proposed
methodology.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Fluid flow through porous media is an ubiquitous process occurring in various applications such as fluidized beds, solid-
ification of alloys, geothermal energy systems and oil recovery. The analysis of flow through a medium with deterministic
porosity has been well studied [1]. However, in practice, only limited statistical information is available regarding the struc-
ture and material properties of the medium. These statistics are easily extracted and reconstructed from experimental data.
The porosity can thus be conveniently described by random fields. This enables us to develop a methodology that treats the
porosity as input uncertainty and analyzes the propagation of this uncertainty through the governing equations of thermal
and flow transport.

In this context, a number of methods have been proposed [2–7] that however are limited to small fluctuations and do not
provide higher-order statistics of the solution. A more effective technique is the spectral stochastic finite element method
(SSFEM) [8]. In this method, the random field is discretized directly, i.e., uncertainty is treated as an additional dimension
along with space and time and a field variable is expanded along the uncertain dimension using suitable expansions. The
most widely used expansions are the Karhunen–Loève expansion (KLE) and the polynomial chaos expansion (PCE). In
PCE, Gaussian random variables are used with Hermite polynomials to represent a second-order stochastic process. This
was extended to the generalized polynomial chaos expansion (GPCE), which uses the Wiener–Askey orthogonal polynomials
[9]. The SSFEM has been widely used in fluid flow simulations [10–12].
. All rights reserved.
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During the past few years, a number of works have been reported using the GPCE method driven by a K–L expansion to
discretize the random porosity [13–18]. Others used the so called KL-based moment-equation approach [19–21]. Most of
these works focused on either thermal diffusion or flow motion. There is no detailed analysis as of today that accounts for both
thermal and momentum transport (e.g., natural convection) in such random porous media. In order to reduce the problem
complexity and decouple the calculation of velocity and pressure, a stochastic projection method was developed based on
the first-order projection method and was applied successfully to natural convection in a closed cavity [22–25]. However,
in porous media flow, due to the porosity dependence of the pressure gradient term in the momentum equation, we cannot
impose the divergence-free constraint as is the case in the first-order projection method [26]. Thus, in order to model uncer-
tainty propagation in natural convection in random heterogeneous porous media we need to extend the stochastic projection
formulation to the second-order projection approach. This is one of the primary contributions of this paper.

The projection method for the incompressible Navier–Stokes equations, also known as the fractional step method or oper-
ator splitting method, has attracted widespread popularity [27]. The reason for this lies on the uncoupling of the velocity and
pressure computation. It was first introduced as the first-order projection method (also called non-incremental pressure-cor-
rection method) [28]. Later, it was extended to the second-order scheme (also called incremental pressure-correction
scheme) in which part of the pressure gradient is kept in the momentum equation [29,30]. These techniques either employ
spectral or finite differences techniques and it is not straightforward to extend them to a finite element interpolation. As it is
known, the approximation spaces for velocity and pressure must a priori satisfy the inf–sup condition, otherwise, there will
be a severe node-to-node spatial oscillation in the pressure field [31]. The first-order projection method has some pressure
stability control which depends on the time step size. However, there is a severe node-to-node spatial pressure oscillation for
a second-order scheme if we do not satisfy the inf–sup condition (e.g., by using a mixed finite element formulation for veloc-
ity and pressure).

In order to utilize the advantage of the incremental projection method which retains the optimal space approximation
property of the finite element and allows equal-order finite element interpolation, a pressure stabilized finite element sec-
ond-order projection formulation for the incompressible Navier–Stokes equations has been developed [32–35]. This method
mimics the stabilizing effect of the first-order projection method. It consists of introducing the projection of pressure gradi-
ent and adding the difference between the Laplacian of the pressure and the divergence of this new field to the incompress-
ibility equation. Following this idea, we developed a framework of pressure stabilized stochastic second-order projection
method. This paper is organized as follows: In Section 2, a brief review of the deterministic problem definition and sec-
ond-order projection method is given. A framework for representing stochastic processes is presented in Section 3. Various
issues related to modeling the uncertainties in heterogeneous porous media are detailed in Section 4. Example problems are
presented in Section 5. Results are compared with those obtained through Monte-Carlo and the sparse grid collocation ap-
proach discussed in [36]. Finally, concluding remarks and future suggestions are given in Section 6.
2. Deterministic problem formulation

2.1. Problem statement

A generalized non-Darcian porous medium model for natural convective flow has been developed in [1] that includes lin-
ear and non-linear matrix drag components as well as the inertial and viscous forces within the fluid. In [37], a similar model
was utilized using a volume-averaged method. Here, we just present the governing equations. For detailed derivation, the
interested reader may refer to the above papers.

Consider a d-dimensional bounded domain D � Rd with a boundary oDd
S

oDn. Dirichlet boundary conditions are applied
on oDd, while Neumann boundary conditions are applied on oDn. The problem consists of finding the velocity v, pressure p
and temperature h such that the following non-dimensional governing equations are satisfied:
ov
ot
þ v
�
� rv ¼ � Pr

Da
ð1� �Þ2

�2 v � 1:75kvkð1� �Þ
ð150DaÞ1=2�2

v þ Prr2v � �rp� �PrRaheg; ð1Þ

r � v ¼ 0; ð2Þ

oh
ot
þ v � rh ¼ r2h; ð3Þ
where � is the porosity of the medium and eg is the unit vector in the direction of gravity. The other important non-dimen-
sional parameters are the Prandtl number Pr, Darcy number Da and the thermal Rayleigh number Ra. Also, we assume the
Boussinesq approximation is satisfied and that appropriate boundary conditions are imposed.

2.2. Pressure stabilized formulation

We will discuss the pressure stabilized second-order projection method formulation based on the pressure projection. For
detailed discussion and derivation, the interesting reader may refer to [33,35]. The method consists in adding to the
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incompressibility equation the divergence of the difference between the pressure gradient and its projection onto the veloc-
ity space, both multiplied by algorithmic parameters defined element-wise. We take these parameters as in [34]
se :¼ c1
m
h2

e

 !2

þ c2
kvhk

he

� �2
2
4

3
5
�1=2

; ð4Þ
where m is the viscosity, he is the local size of the element e, kvhk is the local velocity and c1 and c2 are algorithmic constants,
which we take as c1 ¼ 4 and c2 ¼ 2 for linear elements and c1 ¼ 16 and c2 ¼ 4 for quadratic elements.

Having introduced these parameters, the continuity equation is modified as follows:
�sr2pþ sr � pþr � v ¼ 0; ð5Þ

�rpþ p ¼ 0; ð6Þ

where s is the stabilized parameter as discussed before and the new auxiliary variable p is the projection of the pressure
gradient rp onto the velocity space. Eq. (5) is the modified continuity equation.

2.3. Stabilized second-order projection method

Let us denote with superscript n the value of each variable at the end of the nth time step and with Dt the time step. The
second-order projection method corresponding to Eqs. (1), (3), (5), (6) consists of the following three major steps [35]:

Step 1. Solve for the intermediate velocity vnþ1=2 in the momentum equation:
1
Dt
ðvnþ1=2 � vnÞ þ 2

vn

�
� rvn � vn�1

�
� rvn�1 ¼ � Pr

Da
ð1� �Þ2

�2 ð2vn � vn�1Þ � 1:75kvnkð1� �Þ
ð150DaÞ1=2�2

ð2vn � vn�1Þ

þ Prr2vnþ1=2 � �rpn � �PrRahneg: ð7Þ
In the first-order projection method, the pressure gradient term��rpn is neglected in this equation. It is important to under-
stand that the intermediate velocity vnþ1=2 does not satisfy the continuity (divergence-free) constraint. Thus, we employ the
following projection step.

Step 2. Projection step
ðvnþ1 � vnþ1=2Þ
Dt

þrðpnþ1 � pnÞ ¼ 0; ð8Þ

�sr2pnþ1 þ sr � pn þr � vnþ1 ¼ 0: ð9Þ
A common approach to avoid using a mixed finite element interpolation is to use the pressure Poisson equation. In partic-
ular, we take the divergence of Eq. (8) and make use of Eq. (9) to yield
ðDt þ sÞr2pnþ1 ¼ Dtr2pn þr � vnþ1=2 þ sr � pn: ð10Þ
In this equation, pn; vnþ1=2 and pn are known quantities from the previous step. Thus, we can solve for pnþ1. Note that the
boundary condition for this equation are homogeneous Neumann boundary conditions [28]. In addition, the pressure at a
given point (here at (0, 0)) is fixed at zero value.

Step 3. Finally, we update pnþ1, velocity vnþ1 and temperature hnþ1 according to
pnþ1 ¼ rpnþ1; ð11Þ

vnþ1 ¼ vnþ1=2 � Dtðrpnþ1 �rpnÞ; ð12Þ

hnþ1 � hn

Dt
þ 2vn � rhn � vn�1 � rhn�1 ¼ r2hnþ1: ð13Þ
Note that Eqs. (7) and (10)–(13) provide a complete solution to the problem and are fully-decoupled. Thus, we can first
solve for the intermediate velocity vnþ1=2 from Eq. (7) and then solve the pressure from Eq. (10). Finally, we update pnþ1,
velocity vnþ1 and temperature hnþ1 according to Eqs. (11)–(13). Each of them is a rather simple equation that can be easily
solved using the finite element method. This enables us to introduce next the GPCE formulation of this problem.

3. Representation of stochastic processes

Consider a complete probability space ðX;F ;PÞ with sample space X which corresponds to the outcomes of some exper-
iments, the r-algebra F of subsets of X (these subsets are called events) and the probability measure P on F . The uncertainty
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is modeled as a second-order stochastic process, which is a process that has finite variance. In subsequent sections, any
quantity with an x-dependence represents a stochastic quantity and x 2 X. Theoretically, the stochastic process can be rep-
resented as a random variable at each spatial and temporal location. Therefore, we require an infinity number of random
variables to completely characterize a stochastic process. This poses a numerical challenge in modeling uncertainty in phys-
ical quantities that have spatio-temporal variations, hence necessitating the need for a reduced-order representation. In this
section, we will consider two most popular ways of approximating a second-order stochastic process using a truncated spec-
tral expansion comprising of a few random variables: (a) approximation by the Karhunen–Loève expansion (K–L) [8] and (b)
approximation by the generalized polynomial chaos expansion (GPCE) [9,10].

3.1. Karhunen–Loève expansion

The most common approach for representing input uncertainty is the K–L expansion, which is optimal in the sense that
the mean-square error of the finite representation of the process �ðx;xÞ (in our problem random porosity) is minimized. Let
us denote the process by �ðx;xÞ and its correlation function by Rhhðx; yÞ, where x and y are spatial coordinates. By definition,
the correlation function is real, symmetric and positive definite. All its eigenfunctions are mutually orthonormal and form a
complete set spanning the function space to which �ðx;xÞ belongs. The K–L expansion then takes the following form:
�ðx;xÞ ¼ ��ðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
fiðxÞniðxÞ; ð14Þ
where ��ðxÞ denotes the mean of the random process, and n ¼ fniðxÞg1i¼1 forms a set of uncorrelated random variables. If the
process is a Gaussian process, then they are standard identically independent Nð0;1Þ Gaussian random variables. Also, fiðxÞ
and ki are the eigenfunctions and eigenvalues of the correlation function, respectively. They are the solutions from the fol-
lowing eigenvalue problem:
Z

Rhhðx; yÞfiðyÞdy ¼ kifiðxÞ: ð15Þ
We can solve this equation numerically [8,38]. The K–L expansion provides an effective way to represent the input uncer-
tainties which have a spatial variation such as material properties when their correlation structure is known. Also note that
we always truncate the expansion into finite number of terms. The number of expansion terms represents the stochastic
dimensions used in the problem.

The final form of the truncated K–L expansion is as follows:
�ðx;xÞ ¼ ��ðxÞ þ
XM

i¼1

ffiffiffiffi
ki

p
fiðxÞniðxÞ; ð16Þ
where M is the truncated number of terms, which denotes the stochastic dimension in the problem.
We use the scalable library SLEPc for eigenvalue problem computations [39]. SLEPc is based on the PETSc [40] data struc-

ture and it employs the MPI standard for message-passing communication for parallel high performance computation.

3.2. Generalized polynomial chaos expansion

The polynomial chaos (PC) expansion technique for representation of L2-random processes was originally described in
[41]. This constituted representing the random process as an expansion in terms of Hermite polynomials in the random
space (a trial basis for L2ðXÞ). An extension to the original polynomial chaos expansion technique was introduced in [9],
where hypergeometric orthogonal polynomials from the Askey series in the random space were used as a trial basis for
L2ðXÞ.

We represent the general second-order random process XðxÞ, which is a process with finite variance, as
XðxÞ ¼ a0C0 þ
X1
i1¼1

ai1 C1ðni1 ðxÞÞ þ � � � þ
X1
i1¼1

� � �
Xin�1

in¼1

ai1 i2 ...in Cnðni1 ðxÞ; . . . ; ninðxÞÞ þ � � � ; ð17Þ
where Cnðni1 ðxÞ; . . . ; nin ðxÞÞ denote the Wiener–Askey polynomial chaos of order n in terms of the uncorrelated random vec-
tor n :¼ ðni1 ðxÞ; . . . ; nin ðxÞÞ. In the original polynomial chaos, fCng are multi-dimensional Hermite polynomials and n are
orthonormal standard Gaussian random variables. In the GPCE, however, fCng and n are inter-related through the joint
PDF of n. For example, gamma distribution corresponds to Laguerre polynomials and uniform distribution corresponds to
Legendre polynomials [9]. Since in our problem the porosity is modeled as Gaussian random filed, Hermite polynomials
are used in the PC expansion.

For notational convenience, Eq. (17) can be rewritten as
XðxÞ ¼
X1
j¼0

âjWjðnÞ; ð18Þ



8452 X. Ma, N. Zabaras / Journal of Computational Physics 227 (2008) 8448–8471
where, the equality is interpreted in the L2ðXÞ sense and there is a one-to-one correspondence between Cnðni1 ðxÞ; . . . ; nin ðxÞÞ
and WjðnÞ. Since each type of polynomial in the Askey-series forms a complete basis for L2ðXÞ, we can expect the GPCE to
converge to any L2 random process in the mean-square sense. The orthogonality relation of the Wiener–Askey polynomial
chaos takes the form
hWiWji ¼ hW2
i idij; ð19Þ
where dij is the Kronecker delta and h�; �i denotes the ensemble average, which is the inner product in the Hilbert space of the
variables n,
hf ðnÞgðnÞi ¼
Z

f ðnÞgðnÞWðnÞdn: ð20Þ
Here, WðnÞ is the weighting function corresponding to the Wiener–Askey polynomial chaos basis Wj [9]. Note that, some
types of orthogonal polynomials from the Askey scheme have weighting functions the same as the probability function of
certain types of random distributions. For example, the weighting function of the p-dimensional Hermite polynomial is just
the probability density function of multivariate standard normal distribution, i.e.,
WðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞp

p e�
1
2n

Tn: ð21Þ
In practice, we then choose the type of independent variables n in the polynomials fWjðnÞg according to the type of random
distribution and truncate the expansion at finite term P, i.e.,
XðxÞ ¼
XP

j¼0

âjWjðnÞ: ð22Þ
The total number of expansion terms is (P + 1) and is determined by the dimension (M) of random vector n and the highest
order (n) of the polynomials fWjg:
P þ 1 ¼ ðnþMÞ!
n!M!

: ð23Þ
We choose a suitable order of the GPCE to capture strong non-linear dependence of the solution process on the input uncer-
tainty (uncertainty quantification or uncertainty propagation process).

Remark 1. The truncated GPCE expansion is characterized by the stochastic dimension and the order of the expansion. The
stochastic dimension is determined by the number of terms M in the truncated K–L expansion of the input random
processes. Since the accuracy of the truncated GPCE depends on the order of the expansion, we require techniques to
determine the optimal truncation order. We use the weak-Cauchy convergence criterion for this purpose [13]. Let the guess
for optimal order be q. Then we construct an order m GPCE, where m ¼ qþ 1; qþ 2. In the criterion, we require that the L2

norm of the difference in the two approximations be negligible. Note the convergence should hold point-wise and these
checks are made a priori in order to determine the optimal order of the GPCE.
4. Stochastic finite element method formulation

In this section, we will present the complete stochastic finite element formulation for this problem.

4.1. Non-polynomial function evaluations of stochastic spectral expansion

First, let us determine the spectral expansion of the product of the form c ¼ ab ¼
PP

i¼0ciWiðnÞ, where a and b are given by
aðnÞ ¼
XP

i¼0

aiWiðnÞ; bðnÞ ¼
XP

i¼0

biWiðnÞ: ð24Þ
We want to find the coefficients ck of the expression
cðnÞ ¼
XP

k¼0

ckWkðnÞ ¼
XP

i¼0

XP

j¼0

aibjWiðnÞWjðnÞ: ð25Þ
Following the method introduced in [42], we perform a Galerkin projection onto the polynomial orthogonal basis and use the
orthogonality of the basis discussed in the previous section. Then the expression of the coefficients can be found as
ck ¼
XP

i¼0

XP

j¼0

hWiWjWki
hW2

ki
aibj; ð26Þ
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where the expectation value h�; �i can be evaluated by any numerical integration rule.
Next, we consider a general non-linear function gðx; �Þ, where � is the random porosity. We need to express this function

as
gðx; �Þ ¼
XP

i¼0

giWi; ð27Þ
where gi is the expansion coefficient onto the polynomial basis and the porosity �ðx;xÞ is written here based on the K–L
expansion as follows:
�ðx;xÞ ¼ ��ðxÞ þ
XM

i¼1

ffiffiffiffi
ki

p
fiðxÞniðxÞ ¼

XP

i¼0

�iðxÞWiðxÞ: ð28Þ
Here, �0ðxÞ ¼ ��ðxÞ, �iðxÞ ¼
ffiffiffiffi
ki
p

fiðxÞ, for i ¼ 1; . . . ;M and �iðxÞ ¼ 0, for i > M. This is because the first M þ 1 term Hermite poly-
nomials are just W0 ¼ 1;W1 ¼ n1ðxÞ; . . . ;WM ¼ nMðxÞ. By writing the K–L expansion as Eq. (28) instead of Eq. (16), it is easy to
formulate and perform the polynomial chaos calculations. Using the same method as before (i.e., performing a Galerkin pro-
jection onto each basis element), we can obtain from Eq. (27) the following:
g x;
XP

i¼0

�iWi

 !
;Wj

* +
¼ gjhW2

j i: ð29Þ
Thus, we obtain
gj ¼
hgðx;

PP
i¼0�iWiÞ;Wji
hW2

j i
: ð30Þ
This expression may be evaluated using quadrature rule as discussed in [43] or a non-quadrature-based approach such as the
integration, Taylor series and sampling approach discussed in [42]. Here, we employ a Monte-Carlo based sampling approach
based on the Latin-Hypercube sampling (LHS) strategy [44]. In this case, we first generate samples of uncorrelated standard
normal variables n using LHS. The idea of LHS is to subdivide the stochastic support space of the joint PDF of n into N sub-
intervals along each stochastic dimension and to ensure that one sample of n lies in each subinterval. For each sample, we
then calculate the value of the integrand in the numerator of Eq. (30). Summing all the values, the expectation value h�; �i is
just the arithmetic mean of these realizations. Also, the value of hW2

j i can be pre-computed using quadrature rule.

4.2. GPCE-based formulation

By now, we have developed all the tools we need to formulate natural convection in random porous media. In the sto-
chastic natural convection problem, the input uncertainties are due to the Gaussian random field of porosity.

Note that since there are non-linear functions of �ðx;xÞ in the governing equation (1), we need to first express them in the
polynomial basis using the method discussed in the previous section:
1
�ðx;xÞ ¼

XP

i¼0

�̂iWi; ð31Þ

ð1� �ðx;xÞÞ2

�ðx;xÞ2
¼
XP

i¼0

��iWi; ð32Þ

1� �ðx;xÞ
�ðx;xÞ2

¼
XP

i¼0

~�iWi; ð33Þ
where P is the number of expansion terms determined by the stochastic dimension and expansion order as in Eq. (23).
Thus, the stochastic problem is to find the stochastic functions that describe the velocity field

vðx; t;xÞ : D� ½0; T� �X! Rd, the pressure field pðx; t;xÞ : D� ½0; T� �X! R and the temperature field
hðx; t;xÞ : D� ½0; T� �X! R, such that the following equations are satisfied:
ovðx; t;xÞ
ot

þ vðx; t;xÞ
�ðx; t;xÞ � rvðx; t;xÞ ¼ � Pr

Da
ð1� �ðx; t;xÞÞ2

�ðx; t;xÞ2
vðx; t;xÞ � 1:75kvðx; t;xÞkð1� �ðx; t;xÞÞ

ð150DaÞ1=2�ðx; t;xÞ2
vðx; t;xÞ

þ Prr2vðx; t;xÞ � �ðx; t;xÞrpðx; t;xÞ � �ðx; t;xÞPrRahðx; t;xÞeg; ð34Þ

r � vðx; t;xÞ ¼ 0; ð35Þ

ohðx; t;xÞ
ot

þ vðx; t;xÞ � rhðx; t;xÞ ¼ r2hðx; t;xÞ: ð36Þ
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Since the input uncertainty is taken as a Gaussian random field, we use Hermite polynomials to represent the solution:
vðx; t;xÞ ¼
XP

i¼0

viðx; tÞWiðnÞ; pðx; t;xÞ ¼
XP

i¼0

piðx; tÞWiðnÞ;

hðx; t;xÞ ¼
XP

i¼0

hiðx; tÞWiðnÞ; pðx; t;xÞ ¼
XP

i¼0

piðx; tÞWiðnÞ: ð37Þ
Substitution of Eqs. (28), (31)–(33) and (37) into the stabilized second-order projection method formulation Eqs. (7) and
(10)–(13), results in the following:
1
Dt

XP

i¼0

ðvnþ1=2
i � vn

i ÞWi þ
XP

i¼0

XP

j¼0

XP

l¼0

�̂lð2vn
i � rvn

j � vn�1
i � rvn�1

j ÞWiWjWl

¼ � Pr
Da

XP

i¼0

XP

j¼0

��ið2vn
j � vn�1

j ÞWiWj þ Pr
XP

i¼0

r2ðvnþ1=2
i ÞWi �

1:75kvnk
ð150DaÞ1=2

XP

i¼0

XP

j¼0

~�ið2vn
j � vn�1

j ÞWiWj

�
XP

i¼0

XP

j¼0

�irpn
j WiWj � PrRa

XP

i¼0

XP

j¼0

�ih
n
j WiWjeg; ð38Þ

ðDt þ sÞr2
XP

i¼0

pnþ1
i Wi ¼ Dt

XP

i¼0

r2pn
i Wi þ

XP

i¼0

r � vnþ1=2
i Wi þ s

XP

i¼0

r � pn
i Wi; ð39Þ

XP

i¼0

pnþ1
i Wi ¼

XP

i¼0

rpnþ1
i Wi; ð40Þ

1
Dt

XP

i¼0

ðvnþ1
i � vnþ1=2

i ÞWi þ
XP

i¼0

rpnþ1
i Wi �

XP

i¼0

rpn
i Wi ¼ 0; ð41Þ

1
Dt

XP

i¼0

ðhnþ1
i � hn

i ÞWi þ
XP

i¼0

XP

j¼0

ð2vn
i � rhn

j � vn�1
i � rhn�1

j ÞWiWj ¼
XP

i¼0

r2hnþ1
i Wi: ð42Þ
Then performing a Galerkin projection of each equation by h�;Wki [8,10], and using the orthogonality of the polynomial basis
Eq. (19), we obtain
1
Dt
ðvnþ1=2

k � vn
kÞ þ

hWiWjWlWki
hW2

ki
XP

i¼0

XP

j¼0

XP

l¼0

�̂lð2vn
i � rvn

j � vn�1
i � rvn�1

j Þ

¼ � Pr
Da

XP

i¼0

XP

j¼0

��ið2vn
j � vn�1

j Þeijk �
1:75kvnk
ð150DaÞ1=2

XP

i¼0

XP

j¼0

~�ið2vn
j � vn�1

j Þeijk þ Prr2vnþ1=2
k �

XP

i¼0

XP

j¼0

�irpn
j eijk

� PrRa
XP

i¼0

XP

j¼0

�ih
n
j eijkeg; ð43Þ

ðDt þ skÞr2pnþ1
k ¼ Dtr2pn

k þr � v
nþ1=2
k þ skr � pn

k ; ð44Þ

pnþ1
k ¼ rpnþ1

k ; ð45Þ

1
Dt
ðvnþ1

k � vnþ1=2
k Þ þ rpnþ1

k �rpn
k ¼ 0; ð46Þ

1
Dt
ðhnþ1

k � hn
kÞ þ

XP

i¼0

XP

j¼0

ð2vn
i � rhn

j � vn�1
i � rhn�1

j Þeijk ¼ r2hnþ1
k ; ð47Þ
where eijk ¼
hWiWjWki
hW2

k i
, k ¼ 0;1; . . . ; P. This results in ðP þ 1Þð3dþ 2Þ decoupled deterministic equations.

Remark 2. In Eq. (43), it is time consuming to evaluate the fourth-order product term 2
hW2

k i
PP

i¼0
PP

j¼0
PP

l¼0�̂lvn
i �

rvn
j hWiWjWlWki directly using the method discussed in Section 4.1. To simplify this calculation, we introduce an auxiliary

random variable as follows:
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d ¼
XP

m¼0

dmWm ¼
XP

i¼0

XP

l¼0

�̂lvn
i WiWl; ð48Þ
such that
dm ¼
XP

i¼0

XP

l¼0

�̂lvn
i elim: ð49Þ
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Fig. 1. Schematic of natural convection in a fluid saturated variable porous medium.
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So our term of interest can be reduced to 2
hW2

k i

PP
j¼0

PP
m¼0dm � rvn

j hWjWmWki. This form is now easier to calculate, since it only
evolves third-order product terms.

Remark 3. In the non-linear drag term � 1:75kvnk
ð150DaÞ1=2

PP
i¼0

PP
j¼0

~�ið2vn
j � vn�1

j Þeijk, we assume that the magnitude of the velocity

kvnk is determined by the mean velocity vn
0.
Fig. 3. Contour results obtained with the second-order projection method. Top row: u and v velocity component contours. Bottom row: pressure contours.
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Fig. 4. Schematic of stochastic natural convection in a heterogeneous porous medium.
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Remark 4. From Eq. (44), since the PCE terms are decoupled, the stabilized parameter s is determined by the kth coefficient
of the spectral expansion of the velocity components. So we denote it as sk to emphasize that it is a function of the kth coef-
ficient vk according to Eq. (4).
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Remark 5. For the pressure solution, notice that we impose pið0;0Þ ¼ 0 for each polynomial chaos pressure coefficient. The
selection of this reference pressure value does not affect the velocity or pressure gradient only resulting to a shift of the pres-
sure solution.
4.3. Spatial discretization

From the formulation of Eqs. (43)–(47), we have moved the randomness into the polynomial chaos basis resulting in a set
of deterministic equations. We want to seek the deterministic coefficients of the GPCE expansion. This can be done by any
method, such as finite difference and spectral/hp element method. Here, we will employ the finite element method to solve
the equations.

Let us consider a discretization of the computational domain D into Nel disjoint subdivisions denoted by DðeÞ. In each of
the elements, the finite element basis function is NðxÞ. So for each GPCE coefficient in each finite element, we can write
viðx; tÞ ¼
XNbf

j¼1

vijðtÞNjðxÞ; piðx; tÞ ¼
XNbf

j¼1

pijðtÞNjðxÞ;

hiðx; tÞ ¼
XNbf

j¼1

hijðtÞNjðxÞ; piðx; tÞ ¼
XNbf

j¼1

pijðtÞNjðxÞ; ð50Þ
where Nbf is the number of basis function in each finite element. So, for example, hij denotes the jth nodal value of the ith
GPCE coefficient of temperature in each element. Introducing these expressions into the GPCE formulation and performing a
standard Galerkin projection onto the spatial basis functions, one can obtain the final discretized equations.
Fig. 7. Realizations of the porosity random field: realization with (a) 10 terms, (b) 20 terms, (c) 50 terms and (d) 100 terms.
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5. Numerical examples

Unless otherwise specified, bilinear quadrilateral elements are used for spatial finite element interpolation and Hermite
polynomials are used for the GPCE representation of the main field variables (velocity, pressure and temperature). The x and
y velocity components in all two-dimensional examples considered here are denoted as u and v, respectively. All calculations
are performed using numerical algorithms provided in PETSc. The default Krylov solver was used as the linear solver. All of
the quantities considered in the following numerical examples are dimensionless.

5.1. Deterministic natural convection in a fluid saturated variable porosity medium

Let us first consider a benchmark deterministic example as a demonstration of the effectiveness of the pressure stabilized
second-order projection formulation. This example considers natural convection in a variable porosity medium (Fig. 1). The
computational region is a ½0;1� � ½0;1� square domain. The dimensionless length l in Fig. 1 is taken as l ¼ 0:3. The wall poros-
ity �w is taken as 0.4. The porosity increases linearly from 0.4 at the wall to 1.0 (pure liquid) at the core. The Rayleigh number
is 1� 106, Prandtl number is 1.0 and the Darcy number is 6:665� 10�7. The problem was solved with a mesh discretization
50� 50 and the time step was chosen as 5� 10�5. The simulation was run up to non-dimensional time 1.0.

This problem is originated from [1], where the author used a first-order projection method. In [37], the same problem was
addressed using a SUPG (streamline upwind Petrov–Galerkin) as well as PSPG (pressure) and DSPG (Darcy) stabilized Pet-
rov–Galerkin formulations with equal-order velocity–pressure finite element interpolation. A second-order projection meth-
od without pressure stabilization was also applied for the solution of this problem in [45].

The isotherms and streamline pattern obtained by the first-order and the second-order projection methods are shown in
Fig. 2. From this figure, we can see that the results obtained with the two methods are totally different. We argue that the
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first-order projection method is not applicable to this problem. Indeed from the governing equation (7), we can clearly see
that the porosity is part of the pressure gradient term. So the role of pressure here is not just to impose the continuity con-
straint as is the case in the first-order method. In addition, we can clearly notice that the streamline pattern using the first-
order method is not symmetric. However, since the original problem definition is symmetric in velocity and porosity, the
symmetry should not be broken despite the temperature boundary conditions. On the other hand, the streamline pattern
using the second-order method is approximately symmetric with respect to the center of the region. The authors in [45] also
pointed out recently this symmetry issue.

The obtained contours for the velocity components and pressure are shown in Fig. 3. Note that the velocity contour using
the second-order scheme is mainly distributed in the free fluid region as it is physically expected. However, the velocity con-
tour in the porous region using the first-order method is the same magnitude as in the free fluid. Furthermore, the pressure
contours are quite different between the two methods not only in the shape but also the values.

We also compared the results with those in [37] where a stabilized finite element method was used and the pressure gra-
dient was included in the momentum equation. The isotherms and the maximum value of the streamline are nearly identical
with the results obtained with the second-order projection method. However, the solution in [37] is still not symmetric.

From the above discussion, it is clear that the second-order projection method maintains symmetry (regardless of the
temperature boundary conditions) and provides the correct flow and thermal patterns for convection in porous media with
varying porosity. Now we are ready to extend this idea to the stochastic second-order projection method and solve the sto-
chastic convection problem in random heterogeneous porous media.

5.2. Two-dimensional natural convection in random porous media

A schematic of the problem is shown in Fig. 4. The Rayleigh number is taken as 1� 104, the Prandtl number is 1.0 and the
Darcy number is 7:407� 10�3. The problem was solved with a mesh discretization 30� 30 on a square domain ½0;1� � ½0;1�
and time step 1� 10�3. The initial condition for velocity and temperature is 0. The problem was run up until steady-state.
Fig. 9. Mean values of the variables (top left: u velocity component, top right: v velocity component; bottom left: temperature, bottom right: pressure).
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The input uncertainty comes from the porosity. The mean porosity is taken as 0.6 and an exponential covariance kernel is
assumed as follows:
θ

Fig. 10.
left: tem
Rhhðx; yÞ ¼ r2 exp � r
b

� �
; ð51Þ
where r is the distance between two spatial points and b is the correlation length. An exponential correlation kernel is the
result of a bilateral auto-regression and is most commonly used for describing a second-order stochastic process [8,10].
Higher correlation length would lead to a rapid decay of the eigenvalues in the K–L expansion, i.e., in a reduction in the sto-
chastic input dimension. For this example, the correlation length is taken as b ¼ 0:7, and the standard deviation as r ¼ 1. The
coefficient of variation, which is defined as the standard deviation to the mean of the stochastic process, is 166.67%.

The computed eigenvalues of the correlation function are shown in Fig. 5. From the figure on the right, it is seen that the
first six eigenvalues correspond to 95% of the porosity eigenspectrum. Thus, we consider the porosity to be expanded using
six terms in the K–L expansion and the stochastic dimension is taken as 6. Examples of eigenmodes

ffiffiffiffi
ki
p

fiðxÞ are shown in Fig.
6.

It should be noted that the K–L expansion provides an efficient way for random field generation. Once the eigenmodes are
found, a realization of the porosity can be computed simply by independently sampling n standard Gaussian random vari-
ables and then computing the value using Eq. (14), where n is the number of terms in the K–L expansion needed to generate
realizations with a given accuracy. These realizations can be used with Monte-Carlo simulation to allow comparison with the
results of the GPCE methodology. From the left figure in Fig. 5, it is seen that the first 20 terms represent � 99% of the poros-
ity eigenspectrum. It will be shown in Section 5.2.5 that MC simulation with six terms in the K–L expansion leads to approx-
imately the same solutions as when using 20 terms. Thus, the assumption of a six-dimensional stochastic porosity in the
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GPCE approach is adequate for this problem. Realizations of the porosity random field with different number of terms in the
K–L expansion are shown in Fig. 7.

The optimal order of the GPCE expansion is determined a priori. After computing the K–L expansion of the porosity
�ðx;xÞ, we can evaluate the coefficients of the GPCE expansion for the three non-linear functions given in the right-hand
side of Eqs. (31)–(33) using the method discussed in Section 4.1. The optimal order is determined such that the GPCE
-2.2

-1.8

-1.8
-1

.4

-1
.4

-1

-1

-1

-0
.6

-0.6

-0.6

-0.2

-0.2 -0.2

-0
.2

Fig. 11. Mean velocity vectors and streamlines.

Fig. 12. First-order modes of the u velocity component.



Fig. 13. First-order modes of the v velocity component.

Fig. 14. First-order modes of temperature.
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expansion can accurately represent the PDFs of these non-linear functions. We then generate the realizations from the cal-
culated expansion on the right-hand side of Eqs. (31)–(33) and plot the histogram of all the realizations to obtain the PDFs.
We compare the results with the ‘‘direct sampling” (DS) approach, where the PDF of the functions in Eqs. (31)–(33) is ob-
tained by sampling ni in Eq. (28) from the independent standard normal distribution, then substitute the random variables
ni into the K–L expansion Eq. (28) to obtain one sample of �, finally calculate the value of each non-linear function in Eqs.
(31)–(33) and plot the histogram of all the realizations to obtain the PDFs. The results are shown in Fig. 8 at point (0.47,
0.70). It is clearly seen that a second-order GPCE expansion is enough to capture the input uncertainty. Thus, we choose a
six-dimension second-order GPCE expansion to represent the solution process. For this spectral resolution, P ¼ 27, which
results in a total of 28 modes.

5.2.1. The zeroth-order mode: mean solution
In this section, we first discuss the behavior of the mean solution (see Fig. 9). At first note that the mean values of the

temperature and velocity component distributions differ from the corresponding deterministic predictions. The differences
between the mean and the deterministic solutions are shown in Fig. 10.

From these figures, as expected, we can see that the uncertainty in porosity affects the magnitude of velocity much more
than it affects the temperature. Also, note that, for the u velocity component, there is a large variation along the center line,
while for v and temperature, the large variations occur near the vertical walls. These large differences suggest large standard
deviation in these regions, which is consistent with the contour plots of the standard deviation shown in Section 5.2.4. Fig. 11
plots the mean velocity vectors and some streamlines.

5.2.2. The first-order mode behavior
The first-order modes are shown in Figs. 12–14. They correspond to the polynomials Wk ¼ nk for k ¼ 1;2; . . . ;6. These

modes reflect the linear response of the stochastic field and fluctuations around the mean. As mentioned before, since the
Fig. 15. The second-order modes of the solution (top row: u velocity component; middle row: v velocity component; bottom row: temperature).
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input uncertainty of the porosity field is propagated through the momentum equation, the contours of the velocity compo-
nents have similar patterns as the K–L eigenmodes shown in Fig. 6.

Now let us examine the first-order modes of the temperature. The first mode h1 exhibits a different pattern from the mean
temperature and it is similar to the standard deviation pattern as shown later in Fig. 16. This mode is dominant and contrib-
utes mostly to the uncertainty of the temperature. One can also note that the fluctuations of temperature of the other modes
are governed by the patterns of the corresponding flow modes in the cavity. Thus, although the input uncertainty affects
mainly the flow in the cavity, it also propagates through the thermal transport equation to cause the temperature fluctua-
tion. Finally, note that the contour values of the first-order modes of temperature and velocity components are at least one
order of magnitude lower than the corresponding mean values.

5.2.3. The second-order mode behavior
The second-order modes correspond to the polynomials Wk for k ¼ 7;8; . . . ;27. Some of them are shown in Fig. 15. They

capture the strong non-linear dependence of the solution process. These results are more difficult to interpret than the first-
order modes. The pattern of the contours are very complex, some of which are localized along the wall, while others are ex-
tended through the whole domain. However, it is still clear that the fluctuation of the temperature is governed by the cor-
responding velocity field. The values of the second-order modes are at least one order of magnitude lower than the first-
order modes, which illustrates the fast convergence of the polynomial chaos expansions.

5.2.4. Higher-order moments and probability density functions
When the coefficients of the polynomial chaos expansion are computed, we obtain an approximate solution in the sto-

chastic support space. It is now rather easy to extract higher-order statistics from this solution through sampling strategies.
As an example, Fig. 16 plots the standard deviation of the velocity, temperature and pressure fields. The effect of the uncer-
tainty in porosity is to change the convective pattern in the domain. The PDFs are plotted at the point (0.53, 0.73) that has a
high standard deviation in u (see Fig. 16). The variables at this point were sampled randomly 500,000 times from the
Fig. 16. The standard deviation of the fields (top left: u velocity component, top right: v velocity component; bottom left: temperature, bottom right:
pressure).
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six-dimensional stochastic space and the corresponding PDFs were computed from the histogram distributions. They are
shown in Fig. 17. The results are compared with Monte-Carlo (MC) simulation, where 50,000 samples are generated.

It is seen that the results compare quite well with the MC results. This partially verifies the second-order projection meth-
od. Note that the computed range of possible values of each variable shown is quite large. Also note that the range of the v
velocity component can change from a negative to a positive value.

5.2.5. Comparison with other solution strategies
In order to validate the present GPCE model, we compare the mean and standard deviation with the results obtained from

the sparse grid collocation method [36] and the Monte-Carlo method. The results are shown in Figs. 18 and 19. Convergence
study has been conducted when using the MC method. The results show that 50,000 samples are enough to capture all the
statistics. Sample statistics of the variables, i.e., the mean and the standard deviation, are computed from the realizations.
Recall that 20 terms are used in the K–L expansion in these MC results, while we have limited the number of independent
random variables in the GPCE expansion to 6. We also test for convergence when using the collocation method. A level 5
collocation, which corresponds to 4865 collocation points, is enough to interpolate the solutions in the stochastic space.
The SSFEM solutions are shown to be in an excellent agreement with the other two methods in both the mean and standard
deviation. This verifies the accuracy of the stochastic second-order projection finite element method.

The above results also demonstrate that the reduced dimensionality used in the GPCE expansion was sufficient in repre-
senting the propagation of porosity uncertainty in the temperature and velocity fields. To further emphasize this point, we
also compare the results with the solution obtained using 100 terms in the K–L expansion in the Monte-Carlo simulation,
which are shown in Fig. 20. The results again compare very well with the GPCE and collocation methods. So it is seen that
velocityv

Pr
ob

ab
ili

ty

velocityu

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

3 4 5 6 7 8 9
0

0.2

0.4

0.6

SSFEM
MC

-0.5 0 0.5 1
0

0.5

1

1.5

2
SSFEM
MC

0.6 0.62 0.64 0.66 0.68 0.7
0

10

20

30

40

SSFEM
MC

Temperature

Fig. 17. Probability density function for the variables at point (0.53, 0.73). The MC results shown here have been obtained with 20 terms in the K–L
expansion.



X. Ma, N. Zabaras / Journal of Computational Physics 227 (2008) 8448–8471 8467
using small number of terms in GPCE can capture the strong non-linear fluctuation in the random porosity field. It should be
noted that, as mentioned before, the number of terms needed in the K–L expansion depends strongly on the correlation scale.
Here, we chose a reasonable correlation length such that small number of terms (six) can represent most of the energy in the
porosity eigenspectrum. So the GPCE results are nearly the same as the MC results where more K–L expansion terms are in-
cluded than in the GPCE. However, when the correlation length is small compared to the domain size, more terms (higher
stochastic dimension) will be needed in order to obtain the same results as those of the MC method. Due to the curse of
dimensionality issue in GPCE, it is computationally expensive to deal with high-stochastic dimension problems. Therefore,
caution should be given when using this method to solve problems with small correlation length in porosity. A sufficient
high number of terms is needed in GPCE in order to obtain an accurate solution for such problems.

Finally, we note that the total computation time for SSFEM is 7230 min, which is faster than MC by at least an order of
magnitude. On the other hand, the simulation time for the sparse grid collocation method was 5180 min which is a little bit
faster than the SSFEM method.
Fig. 18. Mean v velocity component (left) and temperature (right) contours from different solution strategies. Top row: second-order GPCE expansion;
middle row: a level 5 collocation method; bottom row: Monte-Carlo sampling over 50,000 samples with 20 terms used in the K–L expansion.
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5.2.6. Effect of large variation of random porosity field
In order to further demonstrate the effectiveness of the second-order stabilized stochastic projection method, we consider

the same correlation function as in Eq. (51), but with a rather large variance r2 ¼ 9:0. In this case, the coefficient of variation
is 500%. In order to reduce the computational time, we choose the correlation length for this case as b ¼ 1:0. As a result of the
large variation, higher-order polynomial expansion is needed in order to capture the strong non-linear random fluctuation.
Therefore, a four-dimensional third-order expansion is used in the GPCE computation, which gives a total of 35 modes. Since
the correlation structure does not change from the earlier case examined, the contour pattern of each mode does not change
either. Thus, we will not show these results here. The comparison of the computed standard deviation from the stochastic
projection method and the Monte-Carlo sampling approach is given in Fig. 21. Note that the magnitude of standard deviation
is much larger here than in the case of Fig. 19, although the contour patterns are nearly the same as expected. The large stan-
dard deviation shown results from the larger variation of the random porosity field. Thus, the present method successfully
captures the highly-heterogeneous input uncertainty.
Fig. 19. Standard deviation of v velocity component (left) and temperature (right) contours from different solution strategies. Top row: second-order GPCE
expansion; middle row: a level 5 collocation method; bottom row: Monte-Carlo sampling over 50,000 samples with 20 terms used in the K–L expansion.



Fig. 20. Monte-Carlo sampling over 50,000 samples with 100 terms used in the K–L expansion: (a) mean v velocity component, (b) mean temperature, (c)
standard deviation of v velocity component and (d) standard deviation of temperature.
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6. Conclusions

A second-order stabilized stochastic projection method was used to model uncertainty propagation in natural convection
in random porous media. Due to the decoupling of the calculation of velocity and pressure, the methodology can easily han-
dle large degrees of freedom when solving the stochastic Navier–Stokes equations. In addition to a standard benchmark
deterministic problem, a two-dimensional stochastic problem with moderate and large variation were examined. A detailed
discussion was given to analyze the effects of the randomness on velocity and temperature. Monte-Carlo simulation and the
sparse grid (Smolyak) collocation method were used to validate the present model. For the problems examined, the compu-
tation cost of the SSFEM and sparse grid simulations were similar. The MC simulations were significantly more expensive. In
the SSFEM, it was shown that it is rather easy to identify dominant stochastic modes in the solution and investigate how the
uncertainty propagates from porosity to the velocity and temperature random fields.

In the examples considered, the ratio of the correlation length over the domain size determines the input stochastic
dimensions. For small ratios more terms in the K–L expansion are needed to capture the input uncertainty, which results
in a large number of stochastic dimensions. As it is well known, the GPCE method suffers from the so called ‘‘curse of dimen-
sionality”, where the computational complexity of the problem increases combinatorially with the number of stochastic
dimensions and the number of expansion terms (see Eq. (23)). Therefore, the effectiveness of the method depends on the
ratio of the correlation length over the domain size. Here, we choose a rather moderate correlation length for demonstration
purposes. However, it is emphasized that the method discussed here is general and not limited on the number of input sto-
chastic dimensions provided that sufficient computational resources are available. However, in the high-dimensional case,
the method is not computationally very efficient. The stochastic collocation method can serve as a very attractive alternative
to the SSFEM paradigm [46]. In addition, when the stochastic dimension is moderate, the method also provides an efficient
way for solving the stochastic Navier–Stokes equation which is very computational demanding if we use other stabilized
methods such as in [37].



Fig. 21. Case of large variation in porosity. Comparison of the standard deviation computed with the stochastic projection method and with Monte-Carlo
sampling over 50,000 samples with 100 terms used in the K–L expansion (top row: GPCE results; bottom row: Monte-Carlo results; left column: u velocity
component; right column: temperature).
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The key ingredient in the implementation of the algorithms presented here includes the development of a stochastic
modeling library based on the GPCE formulation. This library includes computational tools for the implementation of the
Askey polynomials, a parallel K–L expansion eigensolver, and a post-processing class for the calculation of higher-order solu-
tion statistics such as standard deviation and probability density function. A sparse grid collocation library based on the
Smolyak algorithm has also been developed. Using such tools, one can easily convert an existing deterministic code into a
code that solves the corresponding stochastic problem.
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